dc.creator |
Nour, C. |
en_US |
dc.date.accessioned |
2016-03-30T09:58:03Z |
|
dc.date.available |
2016-03-30T09:58:03Z |
|
dc.date.datecopyrighted |
2006 |
|
dc.date.issued |
2016-03-30 |
|
dc.identifier.issn |
0944-6532 |
en_US |
dc.identifier.uri |
http://hdl.handle.net/10725/3447 |
|
dc.description.abstract |
In this paper, we study the minimal time function as a function of two variables (the initial and the
terminal points). This function, called the “bilateral minimal time function”, plays a central role in
the study of the Hamilton-Jacobi equation of minimal control in a domain which contains the target set,
as shown in [11]. We study the regularity of the function, and characterize it as the unique (viscosity)
solution of partial Hamilton-Jacobi equations with certain boundary conditions. |
en_US |
dc.language.iso |
en |
en_US |
dc.title |
The Bilateral Minimal Time Function |
en_US |
dc.type |
Article |
en_US |
dc.description.version |
Published |
en_US |
dc.creator.school |
SAS |
en_US |
dc.creator.identifier |
200502681 |
en_US |
dc.author.woa |
N/A |
en_US |
dc.creator.department |
Computer Science and Mathematics |
en_US |
dc.description.embargo |
N/A |
en_US |
dc.relation.ispartof |
Journal of Convex Analysis |
en_US |
dc.description.volume |
13 |
en_US |
dc.description.issue |
1 |
en_US |
dc.article.pages |
61-80 |
en_US |
dc.keywords |
Minimal time function |
en_US |
dc.keywords |
Hamilton-Jacobi equations |
en_US |
dc.keywords |
Viscosity solutions |
en_US |
dc.keywords |
Regularity of value functions |
en_US |
dc.keywords |
Nonsmooth analysis |
en_US |
dc.keywords |
Proximal analysis |
en_US |
dc.identifier.ctation |
Nour, C. (2006). The bilateral minimal time function. Journal of Convex Analysis, 13(1), 61. |
en_US |
dc.creator.email |
chadi.nour@lau.edu.lb |
|
dc.identifier.url |
http://www.heldermann.de/JCA/JCA13/JCA131/jca13005.htm |
|