.

Semiconcavity of the bilateral minimal time function

LAUR Repository

Show simple item record

dc.creator Nour, Chadi en_US
dc.creator Stern, Ronald J. en_US
dc.date.accessioned 2016-03-30T09:34:28Z
dc.date.available 2016-03-30T09:34:28Z
dc.date.datecopyrighted 2008
dc.date.issued 2016-03-30
dc.identifier.issn 0167-6911 en_US
dc.identifier.uri http://hdl.handle.net/10725/3444
dc.description.abstract For a linear control system, we provide conditions under which the bilateral minimal time function T(⋅,⋅) is semiconcave near a given point (α,β). A semiconvexity result of Nour [C. Nour, The bilateral minimal time function, J. Convex Anal. 13 (1) (2006) 61–80, Theorem 4.7] allows us to deduce that T(⋅,⋅) is then also C1,1-smooth near (α,β). The nonlinear case, which remains open, is discussed in the concluding remarks. en_US
dc.language.iso en en_US
dc.title Semiconcavity of the bilateral minimal time function en_US
dc.type Article en_US
dc.description.version Published en_US
dc.title.subtitle The linear case en_US
dc.creator.school SAS en_US
dc.creator.identifier 200502681 en_US
dc.author.woa N/A en_US
dc.creator.department Computer Science and Mathematics en_US
dc.description.embargo N/A en_US
dc.relation.ispartof Systems & Control Letters en_US
dc.description.volume 57 en_US
dc.description.issue 10 en_US
dc.article.pages 863–866 en_US
dc.keywords Bilateral minimal time function en_US
dc.keywords Linear control system en_US
dc.keywords Semiconcavity en_US
dc.keywords Smoothness en_US
dc.identifier.doi http://dx.doi.org/10.1016/j.sysconle.2008.04.001 en_US
dc.identifier.ctation Nour, C., & Stern, R. J. (2008). Semiconcavity of the bilateral minimal time function: The linear case. Systems & Control Letters, 57(10), 863-866. en_US
dc.creator.email chadi.nour@lau.edu.lb
dc.identifier.url http://www.sciencedirect.com/science/article/pii/S0167691108000698


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search LAUR


Advanced Search

Browse

My Account